EconPapers    
Economics at your fingertips  
 

Pareto Equilibria with coherent measures of risk

David Heath and Hyejin Ku

Mathematical Finance, 2004, vol. 14, issue 2, 163-172

Abstract: In this paper, we provide a definition of Pareto equilibrium in terms of risk measures, and present necessary and sufficient conditions for equilibrium in a market with finitely many traders (whom we call “banks”) who trade with each other in a financial market. Each bank has a preference relation on random payoffs which is monotonic, complete, transitive, convex, and continuous; we show that this, together with the current position of the bank, leads to a family of valuation measures for the bank. We show that a market is in Pareto equilibrium if and only if there exists a (possibly signed) measure that, for each bank, agrees with a positive convex combination of all valuation measures used by that bank on securities traded by that bank.

Date: 2004
References: View complete reference list from CitEc
Citations: View citations in EconPapers (52)

Downloads: (external link)
https://doi.org/10.1111/j.0960-1627.2004.00187.x

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathfi:v:14:y:2004:i:2:p:163-172

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0960-1627

Access Statistics for this article

Mathematical Finance is currently edited by Jerome Detemple

More articles in Mathematical Finance from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-04-17
Handle: RePEc:bla:mathfi:v:14:y:2004:i:2:p:163-172