Pareto Equilibria with coherent measures of risk
David Heath and
Hyejin Ku
Mathematical Finance, 2004, vol. 14, issue 2, 163-172
Abstract:
In this paper, we provide a definition of Pareto equilibrium in terms of risk measures, and present necessary and sufficient conditions for equilibrium in a market with finitely many traders (whom we call “banks”) who trade with each other in a financial market. Each bank has a preference relation on random payoffs which is monotonic, complete, transitive, convex, and continuous; we show that this, together with the current position of the bank, leads to a family of valuation measures for the bank. We show that a market is in Pareto equilibrium if and only if there exists a (possibly signed) measure that, for each bank, agrees with a positive convex combination of all valuation measures used by that bank on securities traded by that bank.
Date: 2004
References: View complete reference list from CitEc
Citations: View citations in EconPapers (52)
Downloads: (external link)
https://doi.org/10.1111/j.0960-1627.2004.00187.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathfi:v:14:y:2004:i:2:p:163-172
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0960-1627
Access Statistics for this article
Mathematical Finance is currently edited by Jerome Detemple
More articles in Mathematical Finance from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().