CONSTRAINED OPTIMIZATION WITH RESPECT TO STOCHASTIC DOMINANCE: APPLICATION TO PORTFOLIO INSURANCE
Nicole El Karoui and
Asma Meziou
Mathematical Finance, 2006, vol. 16, issue 1, 103-117
Abstract:
We are concerned with a classic portfolio optimization problem where the admissible strategies must dominate a floor process on every intermediate date (American guarantee). We transform the problem into a martingale, whose aim is to dominate an obstacle, or equivalently its Snell envelope. The optimization is performed with respect to the concave stochastic ordering on the terminal value, so that we do not impose any explicit specification of the agent's utility function. A key tool is the representation of the supermartingale obstacle in terms of a running supremum process. This is illustrated within the paper by an explicit example based on the geometric Brownian motion.
Date: 2006
References: View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9965.2006.00263.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathfi:v:16:y:2006:i:1:p:103-117
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0960-1627
Access Statistics for this article
Mathematical Finance is currently edited by Jerome Detemple
More articles in Mathematical Finance from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().