EconPapers    
Economics at your fingertips  
 

SOLVABLE AFFINE TERM STRUCTURE MODELS

Martino Grasselli and Claudio Tebaldi ()

Mathematical Finance, 2008, vol. 18, issue 1, 135-153

Abstract: An Affine Term Structure Model (ATSM) is said to be solvable if the pricing problem has an explicit solution, i.e., the corresponding Riccati ordinary differential equations have a regular globally integrable flow. We identify the parametric restrictions which are necessary and sufficient for an ATSM with continuous paths, to be solvable in a state space , where , the domain of positive factors, has the geometry of a symmetric cone. This class of state spaces includes as special cases those introduced by Duffie and Kan (1996), and Wishart term structure processes discussed by Gourieroux and Sufana (2003). For all solvable models we provide the procedure to find the explicit solution of the Riccati ODE.

Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (39)

Downloads: (external link)
https://doi.org/10.1111/j.1467-9965.2007.00325.x

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathfi:v:18:y:2008:i:1:p:135-153

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0960-1627

Access Statistics for this article

Mathematical Finance is currently edited by Jerome Detemple

More articles in Mathematical Finance from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathfi:v:18:y:2008:i:1:p:135-153