Small†cost asymptotics for long†term growth rates in incomplete markets
Yaroslav Melnyk and
Frank Thomas Seifried
Mathematical Finance, 2018, vol. 28, issue 2, 668-711
Abstract:
This paper provides a rigorous asymptotic analysis of long†term growth rates under both proportional and Morton–Pliska transaction costs. We consider a general incomplete financial market with an unspanned Markov factor process that includes the Heston stochastic volatility model and the Kim–Omberg stochastic excess return model as special cases. Using a dynamic programming approach, we determine the leading†order expansions of long†term growth rates and explicitly construct strategies that are optimal at the leading order. We further analyze the asymptotic performance of Morton–Pliska strategies in settings with proportional transaction costs. We find that the performance of the optimal Morton–Pliska strategy is the same as that of the optimal one with costs increased by a factor of 2. Finally, we demonstrate that our strategies are in fact pathwise optimal, in the sense that they maximize the long†run growth rate path by path.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/mafi.12152
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathfi:v:28:y:2018:i:2:p:668-711
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0960-1627
Access Statistics for this article
Mathematical Finance is currently edited by Jerome Detemple
More articles in Mathematical Finance from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().