Credit portfolio selection with decaying contagion intensities
Lijun Bo,
Agostino Capponi and
Peng‐Chu Chen
Mathematical Finance, 2019, vol. 29, issue 1, 137-173
Abstract:
We develop a fixed‐income portfolio framework capturing the exponential decay of contagious intensities between successive default events. We show that the value function of the control problem is the classical solution to a recursive system of second‐order uniformly parabolic Hamilton–Jacobi–Bellman partial differential equations. We analyze the interplay between risk premia, decay of default intensities, and their volatilities. Our comparative statics analysis finds that the investor chooses to go long only if he is capturing enough risk premia. If the default intensities deteriorate faster, the investor increases the size of his position if he goes short, or reduces the size of his position if he goes long.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
https://doi.org/10.1111/mafi.12177
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathfi:v:29:y:2019:i:1:p:137-173
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0960-1627
Access Statistics for this article
Mathematical Finance is currently edited by Jerome Detemple
More articles in Mathematical Finance from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().