Robust Markowitz mean‐variance portfolio selection under ambiguous covariance matrix
Amine Ismail and
Huyên Pham
Mathematical Finance, 2019, vol. 29, issue 1, 174-207
Abstract:
This paper studies a robust continuous‐time Markowitz portfolio selection problem where the model uncertainty affects the covariance matrix of multiple risky assets. This problem is formulated into a min–max mean‐variance problem over a set of nondominated probability measures that is solved by a McKean–Vlasov dynamic programming approach, which allows us to characterize the solution in terms of a Bellman–Isaacs equation in the Wasserstein space of probability measures. We provide explicit solutions for the optimal robust portfolio strategies and illustrate our results in the case of uncertain volatilities and ambiguous correlation between two risky assets. We then derive the robust efficient frontier in closed form, and obtain a lower bound for the Sharpe ratio of any robust efficient portfolio strategy. Finally, we compare the performance of Sharpe ratios for a robust investor and for an investor with a misspecified model.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (21)
Downloads: (external link)
https://doi.org/10.1111/mafi.12169
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathfi:v:29:y:2019:i:1:p:174-207
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0960-1627
Access Statistics for this article
Mathematical Finance is currently edited by Jerome Detemple
More articles in Mathematical Finance from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().