EconPapers    
Economics at your fingertips  
 

Optimal consumption and investment under transaction costs

David Hobson, Alex S. L. Tse and Yeqi Zhu

Mathematical Finance, 2019, vol. 29, issue 2, 483-506

Abstract: In this paper, we consider the Merton problem in a market with a single risky asset and proportional transaction costs. We give a complete solution of the problem up to the solution of a first‐crossing problem for a first‐order differential equation. We find that the characteristics of the solution (e.g., well‐posedness) can be related to some simple properties of a univariate quadratic whose coefficients are functions of the parameters of the problem. Our solution to the problem via the value function includes expressions for the boundaries of the no‐transaction wedge. Using these expressions, we prove a precise condition for when leverage occurs. One new and unexpected result is that when the solution to the Merton problem (without transaction costs) involves a leveraged position, and when transaction costs are large, the location of the boundary at which sales of the risky asset occur is independent of the transaction cost on purchases.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
https://doi.org/10.1111/mafi.12187

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathfi:v:29:y:2019:i:2:p:483-506

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0960-1627

Access Statistics for this article

Mathematical Finance is currently edited by Jerome Detemple

More articles in Mathematical Finance from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-27
Handle: RePEc:bla:mathfi:v:29:y:2019:i:2:p:483-506