Arrow–Debreu equilibria for rank‐dependent utilities with heterogeneous probability weighting
Hanqing Jin,
Jianming Xia and
Xun Yu Zhou
Mathematical Finance, 2019, vol. 29, issue 3, 898-927
Abstract:
We study Arrow–Debreu equilibria for a one‐period‐two‐date pure exchange economy with rank‐dependent utility agents having heterogeneous probability weighting and outcome utility functions. In particular, we allow the economy to have a mix of expected utility agents and rank‐dependent utility ones, with nonconvex probability weighting functions. The standard approach for convex economy equilibria fails due to the incompatibility with second‐order stochastic dominance. The representative agent approach devised in Xia and Zhou (2016) does not work either due to the heterogeneity of the weighting functions. We overcome these difficulties by considering the comonotone allocations, on which the rank‐dependent utilities become concave. Accordingly, we introduce the notion of comonotone Pareto optima, and derive their characterizing conditions. With the aid of the auxiliary problem of price equilibria with transfers, we provide a sufficient condition in terms of the model primitives under which an Arrow–Debreu equilibrium exists, along with the explicit expression of the state‐price density in equilibrium. This new, general sufficient condition distinguishes the paper from previous related studies with homogeneous and/or convex probability weightings.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://doi.org/10.1111/mafi.12200
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathfi:v:29:y:2019:i:3:p:898-927
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0960-1627
Access Statistics for this article
Mathematical Finance is currently edited by Jerome Detemple
More articles in Mathematical Finance from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().