EconPapers    
Economics at your fingertips  
 

Value‐at‐Risk bounds with two‐sided dependence information

Thibaut Lux and Ludger Rüschendorf

Mathematical Finance, 2019, vol. 29, issue 3, 967-1000

Abstract: Value‐at‐Risk (VaR) bounds for aggregated risks have been derived in the literature in settings where, besides the marginal distributions of the individual risk factors, one‐sided bounds for the joint distribution or the copula of the risks are available. In applications, it turns out that these improved standard bounds on VaR tend to be too wide to be relevant for practical applications, especially when the number of risk factors is large or when the dependence restriction is not strong enough. In this paper, we develop a method to compute VaR bounds when besides the marginal distributions of the risk factors, two‐sided dependence information in form of an upper and a lower bound on the copula of the risk factors is available. The method is based on a relaxation of the exact dual bounds that we derive by means of the Monge–Kantorovich transportation duality. In several applications, we illustrate that two‐sided dependence information typically leads to strongly improved bounds on the VaR of aggregations.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://doi.org/10.1111/mafi.12192

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathfi:v:29:y:2019:i:3:p:967-1000

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0960-1627

Access Statistics for this article

Mathematical Finance is currently edited by Jerome Detemple

More articles in Mathematical Finance from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathfi:v:29:y:2019:i:3:p:967-1000