A variation of the Azéma martingale and drawdown options
Angelos Dassios and
Jia Wei Lim
Mathematical Finance, 2019, vol. 29, issue 4, 1116-1130
Abstract:
In this paper, we derive a variation of the Azéma martingale using two approaches—a direct probabilistic method and another by projecting the Kennedy martingale onto the filtration generated by the drawdown duration. This martingale links the time elapsed since the last maximum of the Brownian motion with the maximum process itself. We derive explicit formulas for the joint densities of (τ,Wτ,Mτ), which are the first time the drawdown period hits a prespecified duration, the value of the Brownian motion, and the maximum up to this time. We use the results to price a new type of drawdown option, which takes into account both dimensions of drawdown risk—the magnitude and the duration.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/mafi.12202
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathfi:v:29:y:2019:i:4:p:1116-1130
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0960-1627
Access Statistics for this article
Mathematical Finance is currently edited by Jerome Detemple
More articles in Mathematical Finance from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().