A direct solution method for pricing options in regime‐switching models
Masahiko Egami and
Rusudan Kevkhishvili ()
Mathematical Finance, 2020, vol. 30, issue 2, 547-576
Abstract:
Pricing financial or real options with arbitrary payoffs in regime‐switching models is an important problem in finance. Mathematically, it is to solve, under certain standard assumptions, a general form of optimal stopping problems in regime‐switching models. In this article, we reduce an optimal stopping problem with an arbitrary value function in a two‐regime environment to a pair of optimal stopping problems without regime switching. We then propose a method for finding optimal stopping rules using the techniques available for nonswitching problems. In contrast to other methods, our systematic solution procedure is more direct as we first obtain the explicit form of the value functions. In the end, we discuss an option pricing problem, which may not be dealt with by the conventional methods, demonstrating the simplicity of our approach.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.1111/mafi.12220
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathfi:v:30:y:2020:i:2:p:547-576
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0960-1627
Access Statistics for this article
Mathematical Finance is currently edited by Jerome Detemple
More articles in Mathematical Finance from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().