Optimal consumption and investment with liquid and illiquid assets
Jin Hyuk Choi
Mathematical Finance, 2020, vol. 30, issue 2, 621-663
Abstract:
I consider an optimal consumption/investment problem to maximize expected utility from consumption. In this market model, the investor is allowed to choose a portfolio that consists of one bond, one liquid risky asset (no transaction costs), and one illiquid risky asset (proportional transaction costs). I fully characterize the optimal consumption and trading strategies in terms of the solution of the free boundary ordinary differential equation (ODE) with an integral constraint. I find an explicit characterization of model parameters for the well‐posedness of the problem, and show that the problem is well posed if and only if there exists a shadow price process. Finally, I describe how the investor's optimal strategy is affected by the additional opportunity of trading the liquid risky asset, compared to the simpler model with one bond and one illiquid risky asset.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://doi.org/10.1111/mafi.12221
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathfi:v:30:y:2020:i:2:p:621-663
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0960-1627
Access Statistics for this article
Mathematical Finance is currently edited by Jerome Detemple
More articles in Mathematical Finance from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().