EconPapers    
Economics at your fingertips  
 

Optimal equilibria for time‐inconsistent stopping problems in continuous time

Yu‐Jui Huang and Zhou Zhou

Mathematical Finance, 2020, vol. 30, issue 3, 1103-1134

Abstract: For an infinite‐horizon continuous‐time optimal stopping problem under nonexponential discounting, we look for an optimal equilibrium, which generates larger values than any other equilibrium does on the entire state space. When the discount function is log subadditive and the state process is one‐dimensional, an optimal equilibrium is constructed in a specific form, under appropriate regularity and integrability conditions. Although there may exist other optimal equilibria, we show that they can differ from the constructed one in very limited ways. This leads to a sufficient condition for the uniqueness of optimal equilibria, up to some closedness condition. To illustrate our theoretic results, a comprehensive analysis is carried out for three specific stopping problems, concerning asset liquidation and real options valuation. For each one of them, an optimal equilibrium is characterized through an explicit formula.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
https://doi.org/10.1111/mafi.12229

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathfi:v:30:y:2020:i:3:p:1103-1134

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0960-1627

Access Statistics for this article

Mathematical Finance is currently edited by Jerome Detemple

More articles in Mathematical Finance from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathfi:v:30:y:2020:i:3:p:1103-1134