Semimartingale theory of monotone mean–variance portfolio allocation
Aleš Černý
Mathematical Finance, 2020, vol. 30, issue 3, 1168-1178
Abstract:
We study dynamic optimal portfolio allocation for monotone mean–variance preferences in a general semimartingale model. Armed with new results in this area, we revisit the work of Cui et al. and fully characterize the circumstances under which one can set aside a nonnegative cash flow while simultaneously improving the mean–variance efficiency of the left‐over wealth. The paper analyzes, for the first time, the monotone hull of the Sharpe ratio and highlights its relevance to the problem at hand.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://doi.org/10.1111/mafi.12241
Related works:
Working Paper: Semimartingale theory of monotone mean--variance portfolio allocation (2020) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathfi:v:30:y:2020:i:3:p:1168-1178
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0960-1627
Access Statistics for this article
Mathematical Finance is currently edited by Jerome Detemple
More articles in Mathematical Finance from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().