Semitractability of optimal stopping problems via a weighted stochastic mesh algorithm
Denis Belomestny,
Maxim Kaledin and
John Schoenmakers
Mathematical Finance, 2020, vol. 30, issue 4, 1591-1616
Abstract:
In this paper, we propose a Weighted Stochastic Mesh (WSM) algorithm for approximating the value of discrete‐ and continuous‐time optimal stopping problems. In this context, we consider tractability of such problems via a useful notion of semitractability and the introduction of a tractability index for a particular numerical solution algorithm. It is shown that in the discrete‐time case the WSM algorithm leads to semitractability of the corresponding optimal stopping problem in the sense that its complexity is bounded in order by ε−4logd+2(1/ε) with d being the dimension of the underlying Markov chain. Furthermore, we study the WSM approach in the context of continuous‐time optimal stopping problems and derive the corresponding complexity bounds. Although we cannot prove semitractability in this case, our bounds turn out to be the tightest ones among the complexity bounds known in the literature. We illustrate our theoretical findings by a numerical example.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/mafi.12271
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathfi:v:30:y:2020:i:4:p:1591-1616
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0960-1627
Access Statistics for this article
Mathematical Finance is currently edited by Jerome Detemple
More articles in Mathematical Finance from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().