EconPapers    
Economics at your fingertips  
 

Optimal dynamic risk sharing under the time‐consistent mean‐variance criterion

Lv Chen, David Landriault, Bin Li and Danping Li

Mathematical Finance, 2021, vol. 31, issue 2, 649-682

Abstract: In this paper, we consider a dynamic Pareto optimal risk‐sharing problem under the time‐consistent mean‐variance criterion. A group of n insurers is assumed to share an exogenous risk whose dynamics is modeled by a Lévy process. By solving the extended Hamilton–Jacobi–Bellman equation using the Lagrange multiplier method, an explicit form of the time‐consistent equilibrium risk‐bearing strategy for each insurer is obtained. We show that equilibrium risk‐bearing strategies are mixtures of two common risk‐sharing arrangements, namely, the proportional and stop‐loss strategies. Their explicit forms allow us to thoroughly examine the analytic properties of the equilibrium risk‐bearing strategies. We later consider two extensions to the original model by introducing a set of financial investment opportunities and allowing for insurers' ambiguity towards the exogenous risk distribution. We again explicitly solve for the equilibrium risk‐bearing strategies and further examine the impact of the extension component (investment or ambiguity) on these strategies. Finally, we consider an application of our results in the classical risk‐sharing problem of a pure exchange economy.

Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://doi.org/10.1111/mafi.12299

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathfi:v:31:y:2021:i:2:p:649-682

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0960-1627

Access Statistics for this article

Mathematical Finance is currently edited by Jerome Detemple

More articles in Mathematical Finance from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathfi:v:31:y:2021:i:2:p:649-682