An elementary approach to the Merton problem
Martin Herdegen,
David Hobson and
Joseph Jerome
Mathematical Finance, 2021, vol. 31, issue 4, 1218-1239
Abstract:
In this article we consider the infinite‐horizon Merton investment‐consumption problem in a constant‐parameter Black–Scholes–Merton market for an agent with constant relative risk aversion R. The classical primal approach is to write down a candidate value function and to use a verification argument to prove that this is the solution to the problem. However, features of the problem take it outside the standard settings of stochastic control, and the existing primal verification proofs rely on parameter restrictions (especially, but not only, R
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://doi.org/10.1111/mafi.12311
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathfi:v:31:y:2021:i:4:p:1218-1239
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0960-1627
Access Statistics for this article
Mathematical Finance is currently edited by Jerome Detemple
More articles in Mathematical Finance from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().