Portfolio liquidation games with self‐exciting order flow
Guanxing Fu,
Ulrich Horst and
Xiaonyu Xia
Mathematical Finance, 2022, vol. 32, issue 4, 1020-1065
Abstract:
We analyze novel portfolio liquidation games with self‐exciting order flow. Both the N‐player game and the mean‐field game (MFG) are considered. We assume that players' trading activities have an impact on the dynamics of future market order arrivals thereby generating an additional transient price impact. Given the strategies of her competitors each player solves a mean‐field control problem. We characterize open‐loop Nash equilibria in both games in terms of a novel mean‐field FBSDE system with unknown terminal condition. Under a weak interaction condition, we prove that the FBSDE systems have unique solutions. Using a novel sufficient maximum principle that does not require convexity of the cost function we finally prove that the solution of the FBSDE systems do indeed provide open‐loop Nash equilibria.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/mafi.12359
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathfi:v:32:y:2022:i:4:p:1020-1065
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0960-1627
Access Statistics for this article
Mathematical Finance is currently edited by Jerome Detemple
More articles in Mathematical Finance from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().