Equilibria of time‐inconsistent stopping for one‐dimensional diffusion processes
Erhan Bayraktar,
Zhenhua Wang and
Zhou Zhou
Mathematical Finance, 2023, vol. 33, issue 3, 797-841
Abstract:
We consider three equilibrium concepts proposed in the literature for time‐inconsistent stopping problems, including mild equilibria (introduced in Huang and Nguyen‐Huu (2018)), weak equilibria (introduced in Christensen and Lindensjö (2018)), and strong equilibria (introduced in Bayraktar et al. (2021)). The discount function is assumed to be log subadditive and the underlying process is one‐dimensional diffusion. We first provide necessary and sufficient conditions for the characterization of weak equilibria. The smooth‐fit condition is obtained as a by‐product. Next, based on the characterization of weak equilibria, we show that an optimal mild equilibrium is also weak. Then we provide conditions under which a weak equilibrium is strong. We further show that an optimal mild equilibrium is also strong under a certain condition. Finally, we provide several examples including one showing a weak equilibrium may not be strong, and another one showing a strong equilibrium may not be optimal mild.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/mafi.12385
Related works:
Working Paper: Equilibria of Time-inconsistent Stopping for One-dimensional Diffusion Processes (2022) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathfi:v:33:y:2023:i:3:p:797-841
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0960-1627
Access Statistics for this article
Mathematical Finance is currently edited by Jerome Detemple
More articles in Mathematical Finance from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().