The log‐moment formula for implied volatility
Vimal Raval and
Antoine Jacquier
Mathematical Finance, 2023, vol. 33, issue 4, 1146-1165
Abstract:
We revisit the foundational Moment Formula proved by Roger Lee fifteen years ago. We show that in the absence of arbitrage, if the underlying stock price at time T admits finite log‐moments E[|logST|q]$\mathbb {E}[|\log S_T|^q]$ for some positive q, the arbitrage‐free growth in the left wing of the implied volatility smile for T is less constrained than Lee's bound. The result is rationalized by a market trading discretely monitored variance swaps wherein the payoff is a function of squared log‐returns, and requires no assumption for the underlying price to admit any negative moment. In this respect, the result can be derived from a model‐independent setup. As a byproduct, we relax the moment assumptions on the stock price to provide a new proof of the notorious Gatheral–Fukasawa formula expressing variance swaps in terms of the implied volatility.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/mafi.12396
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathfi:v:33:y:2023:i:4:p:1146-1165
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0960-1627
Access Statistics for this article
Mathematical Finance is currently edited by Jerome Detemple
More articles in Mathematical Finance from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().