Epstein‐Zin utility maximization on a random horizon
Joshua Aurand and
Yu‐Jui Huang
Mathematical Finance, 2023, vol. 33, issue 4, 1370-1411
Abstract:
This paper solves the consumption‐investment problem under Epstein‐Zin preferences on a random horizon. In an incomplete market, we take the random horizon to be a stopping time adapted to the market filtration, generated by all observable, but not necessarily tradable, state processes. Contrary to prior studies, we do not impose any fixed upper bound for the random horizon, allowing for truly unbounded ones. Focusing on the empirically relevant case where the risk aversion and the elasticity of intertemporal substitution are both larger than one, we characterize the optimal consumption and investment strategies using backward stochastic differential equations with superlinear growth on unbounded random horizons. This characterization, compared with the classical fixed‐horizon result, involves an additional stochastic process that serves to capture the randomness of the horizon. As demonstrated in two concrete examples, changing from a fixed horizon to a random one drastically alters the optimal strategies.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/mafi.12404
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathfi:v:33:y:2023:i:4:p:1370-1411
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0960-1627
Access Statistics for this article
Mathematical Finance is currently edited by Jerome Detemple
More articles in Mathematical Finance from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().