OPTIMAL CONSUMPTION AND PORTFOLIO SELECTION WITH INCOMPLETE MARKETS AND UPPER AND LOWER BOUND CONSTRAINTS
Hiroshi Shirakawa
Mathematical Finance, 1994, vol. 4, issue 1, 1-24
Abstract:
We study an optimal consumption and portfolio selection problem for an investor by a martingale approach. We assume that time is a discrete and finite horizon, the sample space is finite and the number of securities is smaller than that of the possible securities price vector transitions. the investor is prohibited from investing stocks more (less, respectively) than given upper (lower) bounds at any time, and he maximizes an expected time additive utility function for the consumption process. First we give a set of budget feasibility conditions so that a consumption process is attainable by an admissible portfolio process. Also we state the existence of the unique primal optimal solutions. Next we formulate a dual control problem and establish the duality between primal and dual control problems. Also we show the existence of dual optimal solutions. Finally we consider the computational aspect of dual approach through a simple numerical example.
Date: 1994
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9965.1994.tb00047.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathfi:v:4:y:1994:i:1:p:1-24
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0960-1627
Access Statistics for this article
Mathematical Finance is currently edited by Jerome Detemple
More articles in Mathematical Finance from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().