Densely defined non‐closable curl on carpet‐like metric measure spaces
Michael Hinz and
Alexander Teplyaev
Mathematische Nachrichten, 2018, vol. 291, issue 11-12, 1743-1756
Abstract:
The paper deals with the possibly degenerate behaviour of the exterior derivative operator defined on 1‐forms on metric measure spaces. The main examples we consider are the non self‐similar Sierpinski carpets recently introduced by Mackay, Tyson and Wildrick. Although topologically one‐dimensional, they may have positive two‐dimensional Lebesgue measure and carry nontrivial 2‐forms. We prove that in this case the curl operator (and therefore also the exterior derivative on 1‐forms) is not closable, and that its adjoint operator has a trivial domain. We also formulate a similar more abstract result. It states that for spaces that are, in a certain way, structurally similar to Sierpinski carpets, the exterior derivative operator taking 1‐forms into 2‐forms cannot be closable if the martingale dimension is larger than one.
Date: 2018
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.201600467
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:291:y:2018:i:11-12:p:1743-1756
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().