EconPapers    
Economics at your fingertips  
 

Upper bound for the ratios of eigenvalues of Schrödinger operators with nonnegative single‐barrier potentials

Jamel Ben Amara and Jihed Hedhly

Mathematische Nachrichten, 2018, vol. 291, issue 13, 1926-1940

Abstract: In this paper we prove the optimal upper bound λnλm≤n2m2λn>λm≥11supx∈[0,1]q(x)for one‐dimensional Schrödinger operators with a nonnegative differentiable and single‐barrier potential q(x), such that ∣q′(x)∣≤q∗, where q∗=215min{q(0),q(1)}. In particular, if q(x) satisfies the additional condition supx∈[0,1]q(x)≤π211, then λnλm≤n2m2 for n>m≥1. For this result, we develop a new approach to study the monotonicity of the modified Prüfer angle function.

Date: 2018
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.201700164

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:291:y:2018:i:13:p:1926-1940

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:291:y:2018:i:13:p:1926-1940