Matricial Baxter's theorem with a Nehari sequence
Yukio Kasahara and
Nicholas H. Bingham
Mathematische Nachrichten, 2018, vol. 291, issue 17-18, 2590-2598
Abstract:
In the theory of orthogonal polynomials, (non‐trivial) probability measures on the unit circle are parametrized by the Verblunsky coefficients. Baxter's theorem asserts that such a measure is absolutely continuous and has positive density with summable Fourier coefficients if and only if its Verblusnky coefficients are summable. This note presents a version of Baxter's theorem in the matrix case from a viewpoint of the Nehari problem.
Date: 2018
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.201700147
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:291:y:2018:i:17-18:p:2590-2598
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().