Level†δ limit linear series
Eduardo Esteves,
Antonio Nigro and
Pedro Rizzo
Mathematische Nachrichten, 2018, vol. 291, issue 5-6, 827-847
Abstract:
We consider all one†parameter families of smooth curves degenerating to a singular curve X and describe limits of linear series along such families. We treat here only the simplest case where X is the union of two smooth components meeting transversely at a point P. We introduce the notion of level†δ limit linear series on X to describe these limits, where δ is the singularity degree of the total space of the degeneration at P. If the total space is regular, that is, δ=1, we recover the limit linear series introduced by Osserman in . So we extend his treatment to a more general setup. In particular, we construct a projective moduli space Gd,δr(X) parameterizing level†δ limit linear series of rank r and degree d on X, and show that it is a new compactification, for each δ, of the moduli space of Osserman exact limit linear series. Finally, we generalize by associating with each exact level†δ limit linear series g on X a closed subscheme P(g)⊆X(d) of the dth symmetric product of X, and showing that, if g is a limit of linear series on the smooth curves degenerating to X, then P(g) is the limit of the corresponding spaces of divisors. In short, we describe completely limits of divisors along degenerations to such a curve X.
Date: 2018
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.201600251
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:291:y:2018:i:5-6:p:827-847
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().