EconPapers    
Economics at your fingertips  
 

Hardy spaces for Bessel–Schrödinger operators

Edyta Kania and Marcin Preisner

Mathematische Nachrichten, 2018, vol. 291, issue 5-6, 908-927

Abstract: Consider the Bessel operator with a potential on L2((0,∞),xαdx), namely Lf(x)=−f′′(x)−αxf′(x)+V(x)f(x).We assume that α>0 and V∈Lloc1((0,∞),xαdx) is a nonnegative function. By definition, a function f∈L1((0,∞),xαdx) belongs to the Hardy space H1(L) if supt>0e−tLf∈L1((0,∞),xαdx).Under certain assumptions on V we characterize the space H1(L) in terms of atomic decompositions of local type. In the second part we prove that this characterization can be applied to L for α∈(0,1) with no additional assumptions on the potential V.

Date: 2018
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.201600286

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:291:y:2018:i:5-6:p:908-927

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:291:y:2018:i:5-6:p:908-927