Lorentz estimates for asymptotically regular fully nonlinear parabolic equations
Junjie Zhang and
Shenzhou Zheng
Mathematische Nachrichten, 2018, vol. 291, issue 5-6, 996-1008
Abstract:
We prove a global Lorentz estimate of the Hessian of strong solutions to the Cauchy–Dirichlet problem for a class of fully nonlinear parabolic equations with asymptotically regular nonlinearity over a bounded C1, 1 domain. Here, we mainly assume that the associated regular nonlinearity satisfies uniformly parabolicity and the (δ,R)†vanishing condition, and the approach of constructing a regular problem by an appropriate transformation is employed.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1002/mana.201600497
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:291:y:2018:i:5-6:p:996-1008
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().