Comparing variational methods for the hinged Kirchhoff plate with corners
Colette De Coster,
Serge Nicaise and
Guido Sweers
Mathematische Nachrichten, 2019, vol. 292, issue 12, 2574-2601
Abstract:
The hinged Kirchhoff plate model contains a fourth order elliptic differential equation complemented with a zeroeth and a second order boundary condition. On domains with boundaries having corners the strong setting is not well‐defined. We here allow boundaries consisting of piecewise C2, 1‐curves connecting at corners. For such domains different variational settings will be discussed and compared. As was observed in the so‐called Saponzhyan–Babushka paradox, domains with reentrant corners need special care. In that case, a variational setting that corresponds to a second order system needs an augmented solution space in order to find a solution in the appropriate Sobolev‐type space.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.201800092
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:292:y:2019:i:12:p:2574-2601
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().