Traveling wave solutions in delayed higher dimensional lattice differential systems with partial monotonicity
Kun Li and
Yanli He
Mathematische Nachrichten, 2019, vol. 292, issue 12, 2624-2636
Abstract:
In this paper, we consider the existence of traveling wave solutions in delayed higher dimensional lattice differential systems with partial monotonicity. By relaxing the monotonicity of the upper solutions and allowing it greater than positive equilibrium point, we establish the existence of traveling wave solutions by means of Schauder's fixed point theorem. And then, we apply our results to delayed competition‐cooperation systems on higher dimensional lattices.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.201800204
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:292:y:2019:i:12:p:2624-2636
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().