Restricted thresholding: recovering smoothness and preserving edges
Daniel Vera
Mathematische Nachrichten, 2019, vol. 292, issue 1, 195-210
Abstract:
Restricted non linear approximation is a generalization of the N‐term approximation in which a measure on the index set of the approximants controls the type, instead of the number, of elements in the approximation. Thresholding is a well‐known type of non linear approximation. We relate a generalized upper and lower Temlyakov property with the decreasing rate of the thresholding approximation. This relation is in the form of a characterization through some general discrete Lorentz spaces. Thus, not only we recover some results in the literature but find new ones. As an application of these results, we compress and reduce noise of some images with wavelets and shearlets and show, at least empirically, that the L2‐norm is not necessarily the best norm to measure the approximation error.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.201700263
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:292:y:2019:i:1:p:195-210
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().