EconPapers    
Economics at your fingertips  
 

Geometric classification of warped products isometrically immersed into Sasakian space forms

Ali Akram and Laurian‐Ioan Pişcoran

Mathematische Nachrichten, 2019, vol. 292, issue 2, 234-251

Abstract: The main objective of this paper is to study the warped product pointwise semi‐slant submanifolds which are isometrically immersed into Sasakian manifolds. First, we prove some characterizations results in terms of the shape operator, under which influence a pointwise semi‐slant submanifold of a Sasakian manifold can be reduced to a warped product submanifold. Then, we determine a geometric inequality for the second fundamental form regarding to intrinsic invariant and extrinsic invariant using the Gauss equation instead of the Codazzi equation. Evenmore, we give some applications of this inequality into Sasakian space forms, and we will investigate the status of equalities in the inequality. As a particular case, we provide numerous applications of the Green lemma, the Laplacian of warped functions and some partial differential equations. Some triviality results for connected, compact warped product pointwise semi‐slant submanifolds of Sasakian space form by means of Hamiltonian and the kinetic energy of warped function involving boundary conditions are established.

Date: 2019
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.201700121

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:292:y:2019:i:2:p:234-251

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:292:y:2019:i:2:p:234-251