The prescribed Ricci curvature problem on three‐dimensional unimodular Lie groups
Timothy Buttsworth
Mathematische Nachrichten, 2019, vol. 292, issue 4, 747-759
Abstract:
Let G be a three‐dimensional unimodular Lie group, and let T be a left‐invariant symmetric (0,2)‐tensor field on G. We provide the necessary and sufficient conditions on T for the existence of a pair (g,c) consisting of a left‐invariant Riemannian metric g and a positive constant c such that Ric(g)=cT, where Ric(g) is the Ricci curvature of g. We also discuss the uniqueness of such pairs and show that, in most cases, there exists at most one positive constant c such that Ric(g)=cT is solvable for some left‐invariant Riemannian metric g.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.201800052
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:292:y:2019:i:4:p:747-759
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().