Global existence versus blow‐up results for one dimensional compressible Navier–Stokes equations with Maxwell's law
Yuxi Hu and
Na Wang
Mathematische Nachrichten, 2019, vol. 292, issue 4, 826-840
Abstract:
We consider one dimensional isentropic compressible Navier–Stokes equations with constitutive relation of Maxwell's law instead of Newtonion law. For this new model, we show that for small initial data, a unique smooth solution exists globally and converges to the equilibrium state as time goes to infinity. For some large data, in contrast to the situation for classical compressible Navier–Stokes equations, which admits global solutions, we show finite time blow up of solutions for the relaxed system. Moreover, we prove the compatibility of the two systems in the sense that, for vanishing relaxation parameters, the solutions to the relaxed system are shown to converge to the solutions of classical system.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.201700418
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:292:y:2019:i:4:p:826-840
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().