On the Lipschitz equivalence of self‐affine sets
Jun Jason Luo
Mathematische Nachrichten, 2019, vol. 292, issue 5, 1032-1042
Abstract:
Recently Lipschitz equivalence of self‐similar sets on Rd has been studied extensively in the literature. However for self‐affine sets the problem is more awkward and there are very few results. In this paper, we introduce a w‐Lipschitz equivalence by repacing the Euclidean norm with a pseudo‐norm w. Under the open set condition, we prove that any two totally disconnected integral self‐affine sets with a common matrix are w‐Lipschitz equivalent if and only if their digit sets have equal cardinality. The main methods used are the technique of pseudo‐norm and Gromov hyperbolic graph theory on iterated function systems.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.201800041
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:292:y:2019:i:5:p:1032-1042
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().