Stability analysis of coupled structural acoustics PDE models under thermal effects and with no additional dissipation
George Avalos and
Pelin G. Geredeli
Mathematische Nachrichten, 2019, vol. 292, issue 5, 939-960
Abstract:
In this study we consider a coupled system of partial differential equations (PDE's) which describes a certain structural acoustics interaction. One component of this PDE system is a wave equation, which serves to model the interior acoustic wave medium within a given three dimensional chamber Ω. This acoustic wave equation is coupled on a boundary interface Γ0 to a two dimensional system of thermoelasticity: this thermoelastic PDE is composed in part of a structural beam or plate equation, which governs the vibrations of flexible wall portion Γ0 of the chamber Ω. Moreover, this elastic dynamics is coupled to a heat equation which also evolves on Γ0, and which imparts a thermal damping onto the entire structural acoustic system. As we said, the interaction between the wave and thermoelastic PDE components takes place on the boundary interface Γ0, and involves coupling boundary terms which are above the level of finite energy. We analyze the stability properties of this coupled structural acoustics PDE model, in the absence of any additive feedback dissipation on the hard walls Γ1 of the boundary ∂Ω=Γ0∪Γ1. Under a certain geometric assumption on Γ1, an assumption which has appeared in the literature in connection with structural acoustic flow, and which allows for the invocation of a recently derived microlocal boundary trace estimate, we show that classical solutions of this thermally damped structural acoustics PDE decay uniformly to zero, with a rational rate of decay.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1002/mana.201700489
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:292:y:2019:i:5:p:939-960
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().