On para‐Kähler Lie algebroids and contravariant pseudo‐Hessian structures
Saïd Benayadi and
Mohamed Boucetta
Mathematische Nachrichten, 2019, vol. 292, issue 7, 1418-1443
Abstract:
In this paper, we generalize all the results obtained on para‐Kähler Lie algebras in [3] to para‐Kähler Lie algebroids. In particular, we study exact para‐Kähler Lie algebroids as a generalization of exact para‐Kähler Lie algebras. This study leads to a natural generalization of pseudo‐Hessian manifolds, we call them contravariant pseudo‐Hessian manifolds. Contravariant pseudo‐Hessian manifolds have many similarities with Poisson manifolds. We explore these similarities which, among others, leads to a powerful machinery to build examples of non trivial pseudo‐Hessian structures. Namely, we will show that given a finite dimensional commutative and associative algebra (A,.), the orbits of the action Φ of (A,+) on A∗ given by Φ(a,μ)=exp(La∗)(μ) are pseudo‐Hessian manifolds, where La(b)=a.b. We illustrate this result by considering many examples of associative commutative algebras and show that the resulting pseudo‐Hessian manifolds are very interesting.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.201700137
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:292:y:2019:i:7:p:1418-1443
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().