On Ricci negative solvmanifolds and their nilradicals
Jonas Deré and
Jorge Lauret
Mathematische Nachrichten, 2019, vol. 292, issue 7, 1462-1481
Abstract:
In the homogeneous case, the only curvature behavior which is still far from being understood is Ricci negative. In this paper, we study which nilpotent Lie algebras admit a Ricci negative solvable extension. Different unexpected behaviors were found. On the other hand, given a nilpotent Lie algebra, we consider the space of all the derivations such that the corresponding solvable extension has a metric with negative Ricci curvature. Using the nice convexity properties of the moment map for the variety of nilpotent Lie algebras, we obtain a useful characterization of such derivations and some applications.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.201700455
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:292:y:2019:i:7:p:1462-1481
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().