The 3D incompressible Navier–Stokes equations with partial hyperdissipation
Wanrong Yang,
Quansen Jiu and
Jiahong Wu
Mathematische Nachrichten, 2019, vol. 292, issue 8, 1823-1836
Abstract:
The three‐dimensional incompressible Navier–Stokes equations with the hyperdissipation (−Δ)γ always possess global smooth solutions when γ≥54. Tao [6] and Barbato, Morandin and Romito [1] made logarithmic reductions in the dissipation and still obtained the global regularity. This paper makes a different type of reduction in the dissipation and proves the global existence and uniqueness in the H1‐functional setting.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1002/mana.201700176
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:292:y:2019:i:8:p:1823-1836
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().