Submersions and curves of constant geodesic curvature
M. Godoy Molina,
E. Grong and
I. Markina
Mathematische Nachrichten, 2019, vol. 292, issue 9, 1956-1971
Abstract:
Considering Riemannian submersions, we find necessary and sufficient conditions for when sub‐Riemannian normal geodesics project to curves of constant first geodesic curvature or constant first and vanishing second geodesic curvature. We describe a canonical extension of the sub‐Riemannian metric and study geometric properties of the obtained Riemannian manifold. This work contains several examples illustrating the results.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.201800352
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:292:y:2019:i:9:p:1956-1971
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().