Lower bound of measure and embeddings of Sobolev, Besov and Triebel–Lizorkin spaces
Nijjwal Karak
Mathematische Nachrichten, 2020, vol. 293, issue 1, 120-128
Abstract:
In this article, we study the relation between Sobolev‐type embeddings for Sobolev spaces or Hajłasz–Besov spaces or Hajłasz–Triebel–Lizorkin spaces defined on a doubling and geodesic metric measure space and lower bound for measure of balls either in the whole space or in a domain inside the space.
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.201800121
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:293:y:2020:i:1:p:120-128
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().