Higher dimensional Calabi–Yau manifolds of Kummer type
Dominik Burek
Mathematische Nachrichten, 2020, vol. 293, issue 4, 638-650
Abstract:
Based on Cynk–Hulek method from [7] we construct complex Calabi–Yau varieties of arbitrary dimensions using elliptic curves with an automorphism of order 6. Also we give formulas for Hodge numbers of varieties obtained from that construction. We shall generalize the result of [11] to obtain arbitrarily dimensional Calabi–Yau manifolds which are Zariski in any characteristic p≢1(mod12).
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.201800487
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:293:y:2020:i:4:p:638-650
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().