EconPapers    
Economics at your fingertips  
 

Pseudo‐hyperbolic Gauss maps of Lorentzian surfaces in anti‐de Sitter space

Honoka Kobayashi and Naoyuki Koike

Mathematische Nachrichten, 2020, vol. 293, issue 5, 923-944

Abstract: In this paper, we determine the type numbers of the pseudo‐hyperbolic Gauss maps of all oriented Lorentzian surfaces of constant mean and Gaussian curvatures and non‐diagonalizable shape operator in the 3‐dimensional anti‐de Sitter space. Also, we investigate the behavior of type numbers of the pseudo‐hyperbolic Gauss map along the parallel family of such oriented Lorentzian surfaces in the 3‐dimensional anti‐de Sitter space. Furthermore, we investigate the type number of the pseudo‐hyperbolic Gauss map of one of Lorentzian hypersurfaces of B‐scroll type in a general dimensional anti‐de Sitter space.

Date: 2020
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.201800447

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:293:y:2020:i:5:p:923-944

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:293:y:2020:i:5:p:923-944