EconPapers    
Economics at your fingertips  
 

Lattice points in bodies of revolution II

Fernando Chamizo and Carlos Pastor

Mathematische Nachrichten, 2020, vol. 293, issue 6, 1074-1083

Abstract: In [3] it was shown that when a three‐dimensional smooth convex body has rotational symmetry around a coordinate axis one can find better bounds for the lattice point discrepancy than what is known for more general convex bodies. To accomplish this, however, it was necessary to assume a non‐vanishing condition on the third derivative of the generatrix. In this article we drop this condition, showing that the aforementioned bound holds for a wider family of revolution bodies, which includes those with analytic boundary. A novelty in our approach is that, besides the usual analytic methods, it requires studying some Diophantine properties of the Taylor coefficients of the phase on the Fourier transform side.

Date: 2020
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.201800541

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:293:y:2020:i:6:p:1074-1083

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:293:y:2020:i:6:p:1074-1083