Classification and syzygies of smooth projective varieties with 2‐regular structure sheaf
Sijong Kwak and
Jinhyung Park
Mathematische Nachrichten, 2020, vol. 293, issue 7, 1378-1389
Abstract:
The geometric and algebraic properties of smooth projective varieties with 1‐regular structure sheaf are well understood, and the complete classification of these varieties is a classical result. The aim of this paper is to study the next case: smooth projective varieties with 2‐regular structure sheaf. First, we give a classification of such varieties using adjunction mappings. Next, under suitable conditions, we study the syzygies of section rings of those varieties to understand the structure of the Betti tables, and show a sharp bound for Castelnuovo–Mumford regularity.
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.201900345
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:293:y:2020:i:7:p:1378-1389
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().