Algebraicity of analytic maps to a hyperbolic variety
Ariyan Javanpeykar and
Robert Kucharczyk
Mathematische Nachrichten, 2020, vol. 293, issue 8, 1490-1504
Abstract:
Let X be a complex algebraic variety. We say that X is Borel hyperbolic if, for every finite type reduced scheme S over the complex numbers, every holomorphic map from S to X is algebraic. We use a transcendental specialization technique to prove that X is Borel hyperbolic if and only if, for every smooth affine complex algebraic curve C, every holomorphic map from C to X is algebraic. We use the latter result to prove that Borel hyperbolicity shares many common features with other notions of hyperbolicity such as Kobayashi hyperbolicity.
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.201900098
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:293:y:2020:i:8:p:1490-1504
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().