Coarse homotopy groups
Paul D. Mitchener,
Behnam Norouzizadeh and
Thomas Schick
Mathematische Nachrichten, 2020, vol. 293, issue 8, 1515-1533
Abstract:
In this note on coarse geometry we revisit coarse homotopy. We prove that coarse homotopy indeed is an equivalence relation, and this in the most general context of abstract coarse structures. We introduce (in a geometric way) coarse homotopy groups. The main result is that the coarse homotopy groups of a cone over a compact simplicial complex coincide with the usual homotopy groups of the underlying compact simplicial complex. To prove this we develop geometric triangulation techniques for cones which we expect to be of relevance also in different contexts.
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.201800523
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:293:y:2020:i:8:p:1515-1533
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().