EconPapers    
Economics at your fingertips  
 

A classification of surfaces with isotropic Para‐Blaschke tensor

Fengjiang Li, Jianbo Fang and Jianxiang Li

Mathematische Nachrichten, 2020, vol. 293, issue 9, 1762-1775

Abstract: Let M2→S3 be an umbilic‐free surface. Four basic invariants of M2 under the Möbius transformation group of S3 are the Möbius metric g, the Blaschke tensor A, the Möbius second fundamental form B and the Möbius form Φ. A symmetric (0,2) tensor D=A+μB called Para‐Blaschke tensor, where μ is constant, is also Möbius invariant. In this paper, we classify the surfaces with isotropic Para‐Blaschke tensor (D=λg, where λ is a function).

Date: 2020
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.201900222

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:293:y:2020:i:9:p:1762-1775

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:293:y:2020:i:9:p:1762-1775