EconPapers    
Economics at your fingertips  
 

No cubic integer polynomial generates a Sidon sequence

Artūras Dubickas and Aivaras Novikas

Mathematische Nachrichten, 2021, vol. 294, issue 10, 1859-1865

Abstract: In this paper we show that for no integer n0 and no polynomial f with integer coefficients and degree at most 3 the sequence of values {f(n):n=n0,n0+1,⋯} can be a Sidon sequence. This settles a corresponding conjecture of Ruzsa. To prove this result for each f(x)=ax3+bx2+cx+d∈Z[x] we construct infinitely many solutions of the Diophantine equation f(m)+f(n)=f(r)+f(s) in pairwise distinct positive integers m,n,r,s.

Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202000334

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:294:y:2021:i:10:p:1859-1865

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:294:y:2021:i:10:p:1859-1865