EconPapers    
Economics at your fingertips  
 

Characterization of temperatures associated to Schrödinger operators with initial data in BMO spaces

Minghua Yang and Chao Zhang

Mathematische Nachrichten, 2021, vol. 294, issue 10, 2021-2044

Abstract: Let L be a Schrödinger operator of the form L=−Δ+V acting on L2(Rn) where the nonnegative potential V belongs to the reverse Hölder class Bq for some q≥n. Let BMOL(Rn) denote the BMO space on Rn associated to the Schrödinger operator L. In this article we will show that a function f∈BMOL(Rn) is the trace of the solution of Lu:=ut+Lu=0,u(x,0)=f(x), where u satisfies a Carleson‐type condition supxB,rBrB−n∫0rB2∫B(xB,rB)t|∂tu(x,t)|2+|∇xu(x,t)|2dxdt≤C

Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.201900213

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:294:y:2021:i:10:p:2021-2044

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:294:y:2021:i:10:p:2021-2044